Estimation of phytoplankton carbon content in Jatigede Reservoir, Sumedang, West Java

Grin Tommy Panggabean, Niken Tunjung Murti Pratiwi, Sigid Hariyadi, Inna Puspa Ayu, Aliati Iswantari, Dwi Yuni Wulandari


Jatigede Reservoir is stagnant inland water formed from the damming of the Cimanuk river. Jatigede Reservoir, like any other reservoir, is horizontally divided into three areas, namely riverine, transition, and lacustrine. The different characteristics of each zone also impact the composition and community of phytoplankton, trophic status, and carbon content. This study aims to calculate the carbon content of phytoplankton in the waters of the Jatigede Reservoir in each zone with the composition and community of phytoplankton at a certain trophic status. The research stations were selected using purposive sampling with station selection based on the site in the reservoir, namely riverine, transition, and lacustrine. Analysis of trophic status and carbon content was used to determine the condition and presence of carbon in the Jatiged Reservoir. The trophic position of the Jatigede Reservoir based on the Nygaard Index and TSI (Tropic State Index) is categorized into the eutrophic level. Species from the Cyanophyceae class tend to have high abundances, but the higher carbon content is in the Dinophyceae class. Riverin, transitional, and lacustrine zoning have the same trophic status but have different compositions and phytoplankton communities. Based on the study results, the carbon content of phytoplankton was relatively high in the riverine and lacustrine zones and low in the transition zone.



[APHA] American Public Health Association. 2012. Standard Methods for The Examination of Water and Wastewater Ohio (US): AWWA; WEA.
BBWS. 2020. Laporan Hidrologi Kajian Waduk Jatigede tahun ke-4. BBWS Cimanuk-Cisagarung.
Behrenfeld, M. J., E. Boss, D. A. Siegel, and D. M. Shea. 2005 Carbon-based Ocean productivity and phytoplankton physiology from space. Global Biogeochem. Cycles 19:14.
Carlson, RE. 1977. Atrophic state index for lakes. Limnology. Oceanography. 22(2):361-369.
Ciais, P, Chris S, Govindasamy B, Bopp L, Brovkin V, Canadell J, Chhabra AR. Defries, J. Galloway, M. Heimann, C. Jones, C. Le Quere, R.B. Myneni, S. Piao, P. Thornton. 2013. Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis: 465-570. Co. Ltd. Osaka. Japan. 537 p. doi:10.13140/2.1.1081.8883
Culverhouse, P. F., R. Williams, B. Reguera, V. Herry, and S Gonzalez-Gil. 2003. Do experts make mistaken comparison to human and machine identification of dinoflagellates? Mar. Ecol. Prog. Ser. 247: 17–25. doi:10.3354/meps247017
Engel F. 2020. The Role of Freshwater Phytoplankton In The Global Carbon Cycle. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1963. 41 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1002-2.
Falkowshi, P., R.J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. Gruber, K. Hibbard, P. Hogbeng, S. Linder, F.T. Mackenizie, B. Moore, T. Pedersen, Y. Arosenthal, S. Seitzinger, V. Smetacek, and W. Steffen. 2000. The global carbon cycle: A test of our knowledge of earth as a system. Science 290: 291–296. doi 10.1126/science.290.5490.291
Hillebrand H, Dürselen CD, Kırschtel D, Pollıngher U, Zohary T .1999. Biovolume calculation for pelagic and benthic microalgae, Jurnal Phycology., 35, 403-424. doi:10.1046/j.1529-8817.1999. 3520403.x
Jakobsen Hans H. and Markager Stiig 2016. Carbon-to-chlorophyll ratio for phytoplankton in temperate coastal waters: Seasonal patterns and relationship to nutrients * Stiig Markager Limnol. Oceanogr. 61, 1853–1868.
Jakobsen, HH, and Carstensen J. 2011. FlowCAM: Sizing cells and understanding the impact size distributions on biovolume of planktonic community structure. Aquat. Microb. Ecol. 65: 75–87. doi:10.3354/ame01539
Jakobsen, HH, Carstensen J, Harrison PJ, and Zingone A. 2015. Estimating time series phytoplankton C: Chl for phytoplankton in temperate coastal waters biomass: Species identifications and comparing volume to carbon scaling ratios. Estuar. Coast. Shelf Sci. 162: 143– 150. doi: 10.1016/j.ecss.2015.05.006
Mason CF .1991. Biology of Freshwater Pollution. 2nd ed. Longman, 351 s., Great Britain.
Menden-Deuer, S dan Lessard EJ. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and otherprotistton plank. Limnology Oceanografi. 45: 569–579. doi=
Pacheco, F. S., F. Roland, and J. A. Downing. 2014. Eutrophication reverses whole-lake carbon budgets. Inland Waters 4: 41-48. doi:10.5268/iw-4.1.614
Platt T. 2008. Operational estimation of primary production at large geographical scales. Remote Sens. Environ. 112: 3437–3448. doi: 10.1016/j.rse.2007.11.018
Poikane, S., M. V. D. Berg, J. Ortiz-Casas, G. Phillips, A. L. Solheim, D. Tierney dan G. Wolfram, 2009. Lake assessment strategy in European Union (EU): a case study of large European lakes. Very International Verein Limnology 30: 1007–1012. doi:10.1080/03680770.2009.11902290
Prairie YT dan Cole JJ. 2010. Carbon, Unifying Currency. In G. E. Likens [ed.], Biogeochemistry of inland waters. Elsevier Inc.
Pratiwi TMN, Krisanti M, Haryadi S, Ayu PI Iswantari A. Amalia J F.2013. Komposisi Fitoplanton dan Status Kesuburan Perairan Danau Lido, Bogor-Jawa Barat Melalui Beberapa Pendekatan. Jurnal Biologi Indonesia 9(1): 111-120. 10.14203/jbi. v9i1.152
Rawson, DS. 1956. Algal indicators of trophic lake types. Limnology and Oceanography Volume 1, Issue 1 p. 18-25. doi=
Reynolds C, Dokulil M, Padisak J .2000. Understanding the assembly of phytoplankton about the trophic spectrum: where are now? Hydrobiologia, 424; 147-152. doi:10.1023/A:1003973532706
Sara G, Martire ML, Sanfilippo M, Pulicano G, Cortese G, Mazzola A, Manganaro A, Pusceddu A. 2011. Impact of marine aquaculture at large spatial scales: Evidence from N dan P catchment loading and phytoplankton biomass. Marine Environmental Research. 71: 317-324. doi: 10.1016/j.marenvres.2011.02.007
Sathyendranath S. 2009. Carbon-to-chlorophyll ratio and growth rate of phytoplankton in the sea. Mar. Ecol. Prog. Ser. 383: 73–84.
Scheffer M, Reinaldi S, Huisman J, Weissing FJ .2003. Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia, 491; 9- 18.
Sebastian Sobek, Björn Söderbäck, Sara Karlsson, Eva Andersson, and Anna Kristina Brunberg . 2006. A Carbon Budget of a Small Humic Lake: An Example of the Importance of Lakes for Organic Matter Cycling in Boreal Catchments," AMBIO: A Journal of the Human Environment 35(8), 469-475. doi:10.1579/0044-7447
Straskraba M and Tundisi JG. Reservoir Water Quality Management, Guideline of Lake Management Volume 9. International Lake Environment Committee.
Sun J and Lıu D. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Phytoplankton Research. 25; 1331-1346. doi:10.1093/plankt/fbg096
Szalinska E. 2010. Reservoirs as a trap for pollutants: the Czrsztyn Reservoir. Terre et Environmental 88: 205-209
Trousseau-Vuilleman MH. 2001. Do Food Processing Industries Contribute to The Eutrophication of Aquatic Systems? Ecotoxicol. Environmental Safety. 50(2): 143 152.The USA. doi: 10.1006/eesa.2001.2083
Wetzel RG and Likens GE. Limnological analyses. Springer-Verlag Inc. New York. 391 p.
Wiryanto, Totok G, Tandjung SD, Sudibyakto. 2012. Kajian Kesuburan Perairan Waduk Gajah Mungkur Wonogiri. Jurnal Ekosains. IV (3): 1 10.


Grin Tommy Panggabean (Primary Contact)
Niken Tunjung Murti Pratiwi
Sigid Hariyadi
Inna Puspa Ayu
Aliati Iswantari
Dwi Yuni Wulandari
PanggabeanG. T., PratiwiN. T. M., HariyadiS., AyuI. P., IswantariA. and WulandariD. Y. (2022) “Estimation of phytoplankton carbon content in Jatigede Reservoir, Sumedang, West Java”, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management). Bogor, ID, 12(3), pp. 414-422. doi: 10.29244/jpsl.12.3.414-422.

Article Details