Pengaruh koreksi bias dan metode ensemble pada data curah hujan dari empat model luaran Regional Climate Model (RCM) CORDEX-SEA di Sumatera

  • Irza Arnita Nur Program studi Meteorologi Terapan Sekolah pascasarjana IPB
  • Rahmat Hidayat Departemen Geofisika dan Meteorologi, Institut Pertanian Bogor, Kampus IPB Darmaga Bogor, 16680, Indonesia
  • Arnida Lailatul Latifah Staf Laboratorium HPC (High-Performance Computing) LIPI, Cibinong Bogor, Indonesia
  • Misnawati Balai Penelitian Agroklimat dan Hidrologi Indonesia, Kementerian Pertanian, Bogor, Indonesia

Abstract

Drought is a natural disaster that occurs slowly and lasts longer until the wet season occurred. Drought occurred in expected time, so that preparations and preparedness can be made in dealing with drought disasters. Therefore, we need an overview of future drought events (or projections).In this study, Standardized Precipitation Index (SPI) was used as drought index. The occurrence of drought is closely related to weather factors and occurs repeatedly. Time-series weather data is needed to know the time-series weather conditions. Problems with data that often occur can be overcome by using numerical climate modeling which is currently widely used. Regional Climate Model (RCM) is a climate model that can be used to build long-term climate data, both time-series and projection data. The results showed RCM model data required bias correction in order to reduce bias in the CORDEX RCM model data. RCM rainfall models before correction were still biased. Thus, bias correction is needed to reduce bias in models data. Time series obtained from SPI baseline data for 2000-2005 in Lampung and West Sumatra provinces showed SPI value which smaller than the projection SPI value in 2021-2030. While SPI time series with RCP 4.5 and 8.5 scenarios showed different results. SPI with RCP 8.5 scenario have more negative value so that drought occurred more often than RCP 4.5. The negative SPI index that often occured in RCP 8.5 scenario appeared to be in RCM IPSL and MPI models year 2025-2030.

Downloads

Download data is not yet available.

References

Aldrian, E., Sutanto, RD., 2003. Identification of three dominant rainfall regions within indonesia and their relationship to sea surface temperature. Int. Journal of Climatolgy, RmeTs. DOI.org/10.1002/joc.950.
Christensen, J.H., F. Boberg, O.B. Cristensen, dan P. Lucas-Picher. 2008. On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett. 35 (20): L20709. DOI:10.1029/2008GL035694.
Funk, C.C., P.J. Peterson, M.F. Landsfeld, D.H. Pedreros, J.P. Verdin, J.D Rowland, B.E. Romero, G.J. Husak, J.C. Michaelsen dan A.P. Verdin. 2014. A quasi-global precipitation time series for drought monitoring. U.S. Geological Survey Data Series 832, 4p.
Handoko, U., 2020. Tata Ruang Tangguh Bencana Iklim di DAS Batanghari. [Disertasi]. Bogor (ID): Departmen Geofiskia dan Meterologi program studi Klimatologi Terapan, Institut pertanian Bogor.
Hayes, MJ., Svoboda, MD., Wall. N., Widhalm, M.. 2011. The Lincoln Declaration on drought indices: universal meteorological drought index recommended. Bull.Amer. Meteor. Soc., 92(4):485-488.
Hermawan, E. 2010. Pengelompokkan pola curah hujan yang terjadi di Beberapa kawasan Pulau Sumatera berbasis hasil analisis teknik spectral. Jurnal Meteorologi Dan Geofisika vol. 11 no. 2 – November 2010: 75 – 85.
Jadmiko SD., Murdiyarso D, Faqih A. 2017. Koreksi bias luaran model iklim regional untuk analisis kekeringan. Jurnal Tanah dan Iklim. Vol. 41 No. 1. 32–45 . DOI:10.4269/ajtmh.16-0696.
McKee TB., Doesken NJ., Kleist, J., 1993. The relationship of drought frequency and duration to time scales. Proceedings of the Eighth Conference on Applied Climatology. American Meteorological Society: Boston; 179–184.
Piani C, Haerter JO, Coppola, E. 2010. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol. 99:187–192.
Salathe Jr., E.P. 2003. Comparison of various precipitation downscaling method for the simulation of streamflow in a rainshadow river basin. Int. J. Climatol. 23 (8). 887-901. DOI: 10.1002/joc.922.
Shah R, Bharadiya N, Manekar V. 2015. Drought index computation using Standardized Precipitation Index (SPI) method for Surat District, Gujarat. 4: 1243-1249.
Teutschbein, C. dan J. Seibert. 2010. Regional climate model for hydrological impact studies at the catchment scale: a review of recent modelling stategies. Geogr. Compass. 4 (7): 834-860. DOI: 10.1111/j.1749-8198.2010.00357.x.
Thomson MC, Ukawuba I, Hershey CL,3 Bennett A,Ceccato P, Lyon B and Dinku T.2017.Using Rainfall and Temperature Data in the Evaluation of National Malaria Control Programs in Africa. Am. J. Trop. Med. Hyg.97(Suppl 3), pp.
Wigena, AH. 2006. Statistical Downscaling Luaran GCM. Departemen Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor.Bogor.
[WMO] World Meteorological Organization. 2012. Standardized Precipitation Index User Guide. WMO-No.1090.
Yanto, Livneh B and Rajagopalan B. 2017. Data Descriptor: Development of a gridded meteorological dataset over Java island, Indonesia 1985–2014.Scientific Data .DOI: 10.1038/Sdata.2017.72
Published
2021-04-01
How to Cite
Nur, I. A., Rahmat Hidayat, Arnida Lailatul Latifah and Misnawati (2021) “Pengaruh koreksi bias dan metode ensemble pada data curah hujan dari empat model luaran Regional Climate Model (RCM) CORDEX-SEA di Sumatera”, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), 11(1), pp. 49-56. doi: 10.29244/jpsl.11.1.49-56.