Environmental Assessment of Atmospheric Dioxin Dispersion from a Municipal Wastes Power Plant, Indonesia

Kajian lingkungan dispersi dioksin atmosfer dari pembangkit listrik tenaga sampah perkotaan, Indonesia.

  • Albert Sulaiman Badan Pengkajian dan Penerapan Teknologi
Keywords: atmospheric dispersion, dioxin, environmental assesssment, municipal waste incinerator

Abstract

We assess of environemental effect of the dioxin dispersion from municipal waste power plant (MWPP) covering, characteristic of the dispersion and health risk affected communities in  Indonesia. The dispersion studies through modeling which is  done with the following steps 1 ) estimate dioxin emissions from incinerator processing, 2 ) design the dioxin dispersion by literature review, 3 ) calculate health risk of communities based on the dispersion modeling.  The results show that the dispersion of dioxin is represented in the form of a non-Gaussian solution of the advection-diffusion equation with taking into account the settling and deposition velocity. In the case of MWPP with capacity, 80 tonnes per day produce a concentration of 0.04 pg TEQ/Nm3 in residential areas which are located  200m from chimney. Inhalation exposure resulting is 5.28 pg 1-TEQ/( kg-day ) to adults and 6.95 pg 1-TEQ/( kg-day ) to children. The strategy took to adjust by WHO environmental quality standard  4 pg 1-TEQ /( kg-day ), we increase the reduction of APC  25%. The calculation of emissions based on combustion processes shows that the dioxin concentration of MWPP is still below the threshold required by WHO.

Downloads

Download data is not yet available.

References

1. Abad E, Martinez K, Caixach J, Rivera J. 2006. Polychlorinated dibenzo-p-dioxins, dibenzofurans and ‘dioxin-like’ PCBs in flue gas emissions from municipal waste management plants, Chemosphere, 63, pp. 570–580.
2. Aminuddin, Tambunan AH, Machfud, Novianto A. 2018. Analysis of CO2 Emissions from Geothermal Power Plant Ulubelu and Its Contribution to Development of Electricity Generators in Lampung Province, JPSL, 9(2): 287-304.
3. Assegaf AJ. 2018. Gas Dispersion Modeling from the Chimney Power Plant Pasquil-Gaussian Model , JPSL, 8(3), 414-419.
4. Astrup T. 2008. Management of APC Residues from W-T-E Plants. An overview of management options and treatment methods, (100): ISWA Pr.
5. Benedetto DV., Belkin H, Lima A. 2017. Environmental Geochemistry: Site Characterization, Data Analysis and Case Histories), (644): Elsevier.
6. Briggs G.A. 1973. Diffusion estimation for small emissions. Preliminary report. United States: N. p. doi:10.2172/5118833.
7. Carson JE, and Moses, H. 1969. The Validity of Several Plume Rise Formulas, J. Air. Poll Cont Ass, 19:11, 862-866.
8. Chandra SR, Lee WJ, Mutiara MPE, Mwangi JK, LWang LC, Lin NH, Chien GPC. 2015. Atmospheric Deposition of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans at Coastal and High Mountain Areas in Taiwan, Aerosol Air Qual Res, 15: 1390–1411.
9. Chao MR, Hu CW, Chen YL, Chien GPC,Lee WJ, Chang LW, Lee WS,Wu KY. 2004. Approaching gas–particle partitioning equilibrium of atmospheric PCDD/Fs with increasing distance from an incinerator: measurements and observations on modeling, Atmos Environ, 38, 1501–1510.
10. Dewi NWSP, June T, Yani M, Mujito, Estimating Dust, SO2 and NOx Dispersion from Cement Industry Using Gaussian Model that Integrated with Screen3 , JPSL 8(2), 109-119.
11. Fiani E, Karl U, Tmlauf G, De Assuncao JV, Kaareka S, Fiedler H, Costner P and Weber R. 2013. Toolkit for Identification and Quantification of Releases of Dioxins, Furans and Other Unintentional POPs, Stockholm Convention, January.
12. Hoogenboom LAP, Kramer HL, Jansen EHJM, Megeler MJB, Va Klaveren JD, Traag M, Kuiper WA, Konemen HA, 1995. Risk Asseseement and Risk management of Dioxin and PCBs in food. RIVM Report number 613330001, Bilthoven.
13. Huang CJ, Chen KS, Lai YC, Wang LC, Chien GPC. 2011. Wet Deposition of Polychlorinated Dibenzo-p-dioxins/Dibenzofuran in a Rural Area of Taiwan, Aerosol Air Qual Res, 11: 732–748, 2011.
14. Lali Z. 2018. Release of Dioxins from Solid Waste Burning and its Impacts on Urban Human Population- A Review. J Pollut Eff Cont 6: 215. doi: 10.4172/2375-4397.1000215
15. Lee C.C, and Lin SD. 2007. Handbook of Environmental Engineering Calculations, 2nd edition, McGraw-Hill Companies.
16. Lee KL, Lee WJ, Mwangi JK, Wang LC, Gao X, Chien GPC. 2016. Atmospheric PM2.5 and Depositions of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Kaohsiung Area, Southern Taiwan, Aerosol Air Qual Res, 16: 1775–1791.
17. Lohman K, Seigneur C. 2001. Atmospheric fate and transport of dioxin: local impact, Chemosphere, 45, 161-171.
18. Lolita Vilavert, Martí Nadal, Marta Schuhmacher, José L Domingo, 2012, Long-term monitoring of dioxins and furans near a municipal solid waste incinerator: human health risks, , Waste Management & Research,30 (9) : 908-916.
19. Ma XJ, Jiang XG, Jin YQ, Liu HM, Li XD, Chen T, Yan JH. 2012. Dispersion modeling and health risk assessment of dioxin emissions from a municipal solid waste incinerator in Hangzhou, China, J Zhejiang Univ-Sci A, (Appl Phys & Eng), 13(1):69-78.
20. Mc Kay G. 2002. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incinerator: review, Chem. Eng. Journal 86, 343-368.
21. Mohan. S.M. 2016. An overview of particulate dry deposition: measuring methods, deposition velocity and controlling factors, Int. J. Environ. Sci. Technol, 13:387–402 DOI 10.1007/s13762-015-0898-7.
22. Niessen, WR. 2010. Combution and Incineration Processes: apllications in environmental engineering, fourth edtion, CRC Press, 798 pp.
23. Nzihou A , Themelis NJ, Kemiha M, Benhamou Y, 2012. Dioxin emissions from municipal solid waste incinerators (MSWIs) in France. Waste Management, 32 (12), p.2273-2277.
24. Nouwen J, Cornelis R, Fre R.D, Wever M, Vuane P, Mensik C, Patyn J, Vershane L, Hooge R, Collier M, Schoeter G, Van Cleuvenbergen R, Geuzen P, 2001, Health Risk Asssessment of Dioxin Emission from Municipal Waste Incinerator: The Neerlandquarter, Chemosphere, 43, 909-923.
25. Okubo M, Kuwahara K.2020. Principle and design of emission control systems. New Technologies for Emission Control in Marine Diesel Engines, 53-143
26. Olie K, Vermeulen PL, Hutzinger O. 1977. Chlorodibenzo -p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in the Netherlands, Chemosphere, 9 (8):501-522.
27. Rao, HR. and Brown, DR. 1990. Connecticut’s Dioxin Ambient Air Quality Standard, Risk Analysis, 10, 4, 597-603.
28. Ryan. P. 1993. Review of Mathematical Models for Health Risk assessment IV, Intermedia Chemical Trasport. Environ Software 8, 157-172.
29. Seinfield JH, Pandis SN. 2016. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. (827): Wiley and Son.
30. Stockie JM. 2011. The Mathematics of Atmospheric Dispersion Modeling, SIAM Review. 53 (2): 349-472.
31. Sulaiman A, Sadly M. 2014. Integration of Smoke Dispersion Modeling with Earth’s Surface Image, International Conference on Advanced Computer Science and Information Systems. Proc. IEEE Indonesia section.
32. Thohiroh, NA, Mardiati R. 2017. Desain Pembangkit Listrik Tenaga Sampah (PLTSa) Menggunakan Teknologi Pembakaran Yang Fisibel Studi Kasus TPST Bantargebang, SENTER, 15-16 Desember 2017, pp. 212~224 ISBN: 978-602-512-810-3.
33. Ujam, AJ and Eboh, F. 2012. Flue Gas Analysis of a Small-Scale Municipal Solid Waste-Fired Steam Generator, Int. J. of Compt. Eng. Res, 2,8, 2250-3005.
34. USEPA. 1999. Polychlorinated dibenzo-p-dioxins and related compounds update: impact on fish advisories.
35. Warlina L, Noor E, Fauzy Alhmad, Tarumingkeng R.C, Sutjhahjo SH. 2008. Estimasi Emisi Dioksin/Furan dan Faktor faktor yang memperngaruhi Konsentrasi Emisi ke Udara yang berasal dari Industri Logam, Jurnal Matematika, Sains dan Teknologi, 9, 1, 11-20.
36. Walina L. 2015. A dynamic model of the pollution impact of dioxin/furan on the environment, society and economy, Air Pollution XXIII, WIT Transactions on Ecology and The Environment, Vol 198, (216): WIT Pr.
37. Winanti WS, 2018. Teknologi Pembangkit Listrik Tenaga Sampah (PLTSa) , Prosiding Seminar Nasional dan Konsultasi Teknologi Lingkungan Jakarta, 20 September 2018.
38. WHO. 2000. Air quality quidelines for Europe, Second edition WHO Regional Publications, European Series, No. 91.
39. Wu YL, Lin LF, Shih SI, Yu KM, Hsieh LT, Wang LC, Chien GPC. 2009. Atmospheric deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans on the soils in the vicinity of municipal solid waste incinerators, J Environ Sci Heal A, 44:13, 1327-1334, DOI: 10.1080/10934520903213020.
40. Xu, M.X., Yan, J.H., Lu, S.Y., Li, X.D., Chen, T., Ni, M.J., Dai, H.F., Wang, F., Cen, K.F., 2009. Concentrations, profiles and sources of atmospheric PCDD/Fs near a municipal solid waste incinerator in Eastern China. Envir. Sci. and Technology, 43(4):1023-1029.
41. Zhu J, Tang H, Xing J, Lee WJ, Yan P, Cui K. 2017. Atmospheric Deposition of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Two Cities of Southern China, Aerosol Air Qual Res, 17: 1798–1810.
Published
2021-04-01
How to Cite
Sulaiman, A. (2021) “Environmental Assessment of Atmospheric Dioxin Dispersion from a Municipal Wastes Power Plant, Indonesia: Kajian lingkungan dispersi dioksin atmosfer dari pembangkit listrik tenaga sampah perkotaan, Indonesia.”, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), 11(1). Available at: https://dthh.journal.ipb.ac.id/index.php/jpsl/article/view/32859 (Accessed: 13May2021).