Prevalence of Methicillin Resistant Staphylococcus aureus in Raw Goat Milks from Selected Farms in Terengganu, Malaysia

  • M. H. Chai School of Animal Science, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin
  • T. A. M. Faiq School of Animal Science, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin
  • S. M. Z. Ariffin Department of Veterinary Pre-Clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia
  • Z. Suhaili School of Animal Science, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin
  • M. Z. Sukiman School of Animal Science, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin
  • M. F. Ghazali School of Animal Science, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin
Keywords: Goat milk, antibiotic susceptibility, MRSA, nuc gene and mecA gene

Abstract

The emergence of antimicrobial drug resistant bacteria has been a concern worldwide. One of bacteria that has been reported to develop resistance is Methicillin Resistant Staphylococcus aureus (MRSA). Recent studies showed that Livestock Associated MRSA (LA-MRSA) was found in domestic food animals and their handlers. The aim of this study was to investigate the prevalence of MRSA in goat milk of goat farms located in Terengganu. A total of 664 udder milks were taken from 332 goats at 40 selected farms within Terengganu state. Then, screening of bacteria and isolation of suspected S. aureus isolates in the milk samples was done using selective agar, Gram staining and biochemical tests. The identity of the bacteria isolated was further confirmed using PCR where specific designed primers were used to detect the presence of nuc gene of S. aureus (278bp) and mecA gene (533bp) of MRSA. Both S. aureus and MRSA isolates were also tested for their susceptibilities toward the antimicrobial drugs. Fifty milk samples were found to contain S. aureus and one of the S. aureus isolates were MRSA. The bacteria isolates were found to have higher tendency to be resistance toward Penicillin (26.0%) and Oxacillin (12.0%). This study provides useful data on the current status of MRSA prevalence in small ruminant’s milk, which can be used to prevent transmission of LA-MRSA to human and other animals.

Downloads

Download data is not yet available.

References

Aras, Z., L. Aydin, & K. Kav. 2012. Isolation of methicillin-resistant Staphylococcus aureus from caprine mastitis cases. Small Rumin. Res. 102: 68-73. https://doi.org/10.1016/j.smallrumres.2011.08.014

Banada, P. P., S. Chakravorty, D. Shah, M. Burday, F. M. Mazzella, & D. Alland. 2012. Highly sensitive detection of Staphylococcus aureus directly from patient blood. PLoS ONE 7(2): e31126. https://doi.org/10.1371/journal.pone.0031126

Bastidas, C.A., I. Villacrés-Granda, D. Navarrete, M. Monsalve, M. Coral-Almeida, & S. G. Cifuentes. 2019. Antibiotic susceptibility profile and prevalence of mecA and lukS-PV/lukF-PV genes in Staphylococcus aureus isolated from nasal and pharyngeal sources of medical students in Ecuador. Infect. Drug Resist. 12: 2553.

https://doi.org/10.2147/IDR.S219358

Chambers, H. F. & F. R. DeLeo. 2009. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 7:629. https://doi.org/10.1038/nrmicro2200

Chu, C., C. Yu, Y. Lee, & Y. Su. 2012. Genetically divergent methicillin-resistant Staphylococcus aureus and sec-dependent mastitis of dairy goats in Taiwan. BMC Vet. Res. 8: 39. https://doi.org/10.1186/1746-6148-8-39

Clinical and Laboratory Standards Institute. 2018. Performance Standards for Antimicrobial Susceptibility Testing. 28th ed. CLSI supplement M100. Wayne, PA: CLSI.

Cuny, C., L.H. Wieler, & W. Witte. 2015. Livestock-Associated MRSA: The impact on humans. Antibiotics 4:521-543. https://doi.org/10.3390/antibiotics4040521

Fitzgerald, J. R. 2012. Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends Microbiol. 20:192-198. https://doi.org/10.1016/j.tim.2012.01.006

Foster, T. J. 2017. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol. Rev. 41: 430-449. https://doi.org/10.1093/femsre/fux007

Ganai, A. W., S. K. Kotwal, N. A. J. I. M. A. A. N. A. Wani, M. A. Malik, R. I. Z. W. A. N. Jeelani, S. Kour, & R. Zargar. 2016. Detection of mecA gene of methicillin resistant Staphylococcus aureus by PCR assay from raw milk. Indian J. Anim. Sci. 86: 508-511.

Gao, J., M. Ferreri, X.Q. Liu, L.B. Chen, J. L. Su, & B. Han. 2011. Development of multiplex polymerase chain reaction assay for rapid detection of Staphylococcus aureus and selected antibiotic resistance genes in bovine mastitic milk samples. J. Vet. Diagn. Invest. 23:894-901. https://doi.org/10.1177/1040638711416964

Gopal, S. & K. C. Divya. 2017. Can methicillin-resistant Staphylococcus aureus prevalence from dairy cows in India act as potential risk for community-associated infections?: A review., Vet. World 10: 311. https://doi.org/10.14202/vetworld.2017.311-318

Guardabassi, L., J. Larsen, J. S. Weese, P. Butaye, A. Battisti, J. Kluytmans, D. H. Lloyd, & R. L. Skov. 2013. Public health impact and antimicrobial selection of meticillin-resistant staphylococci in animals. J. Glob. Antimicrob. Resist. 1:55-62. https://doi.org/10.1016/j.jgar.2013.03.011

Holmes, M.A. & R. N. Zadoks. 2011. Methicillin resistant S. aureus in human and bovine mastitis. J. Mammary Gland Biol. Neoplasia. 16:373-382. https://doi.org/10.1007/s10911-011-9237-x

Kateete, D. P., C. N. Kimani, F. A. Katabazi, A. Okeng, M. S. Okee, A. Nanteza, M. L. Joloba, & F. C. Najjuka. 2010. Identification of Staphylococcus aureus: DNase and Mannitol salt agar improve the efficiency of the tube coagulase test. Ann. Clin. Microbiol. Antimicrob. 9: 23. https://doi.org/10.1186/1476-0711-9-23

Lozano, C., H. Gharsa, K. Ben Slama, M. Zarazaga, & C. Torres. 2016. Staphylococcus aureus in animals and food: methicillin resistance, prevalence and population Structure. A review in the African continent. Microorganisms 4:12. https://doi.org/10.3390/microorganisms4010012

Massawe, H. F., R. H. Mdegela, & L. R. Kurwijila. 2019. Antibiotic resistance of Staphylococcus aureus isolates from milk produced by smallholder dairy farmers in Mbeya Region, Tanzania. Int. J. One Health 5:31-37. https://doi.org/10.14202/IJOH.2019.31-37

Nam, H.M., A. L. Lee, S. C. Jung, M. N. Kim, G. C. Jang, S. H. Wee, & S. K. Lim. 2011. Antimicrobial susceptibility of Staphylococcus aureus and characterization of methicillin-resistant Staphylococcus aureus isolated from bovine mastitis in Korea. Foodborne Pathog. Dis. 8: 231-238. https://doi.org/10.1089/fpd.2010.0661

Neela, V., A. M. Zafrul, N. S. Mariana, A. van Belkum, Y. K. Liew, & E. G. Rad. 2009. Prevalence of ST9 methicillin-resistant Staphylococcus aureus among pigs and pig handlers in Malaysia. J. Clin. Microbiol, 47: 4138-4140. https://doi.org/10.1128/JCM.01363-09

Petersen, A., M. Stegger, O. Heltberg, J. Christensen, A. Zeuthen, L. K. Knudsen, T. Urth, M. Sorum, L. Schouls, J. Larsen, & R. Skov. 2013. Epidemiology of methicillin-resistant Staphylococcus aureus carrying the novel mecC gene in Denmark corroborates a zoonotic reservoir with transmission to humans. Clin. Microbiol. Infect. 19: E16-E22. https://doi.org/10.1111/1469-0691.12036

Qian, W., L. Shen, X. Li, T. Wang, M. Liu, W. Wang, Y. Fu, & Q. Zeng. 2019. Epidemiological Characteristics of Staphylococcus aureus in Raw Goat Milk in Shaanxi Province, China. Antibiotics 8:141. https://doi.org/10.3390/antibiotics8030141

Rubin, J. E., K. R. Ball, & M. Chirino-Trejo. 2011. Antimicrobial susceptibility of Staphylococcus aureus and Staphylococcus pseudintermedius isolated from various animals. Can. Vet. J. 52: 153.

Stastkova, Z., S. Karpiskova, & R. Karpiskova. 2009. Occurrence of methicillin- resistant strains of Staphylococcus aureus at a goat breeding farm. Vet. Med. 54: 419-426. https://doi.org/10.17221/88/2009-VETMED

Suhaili, Z., N. M. A. Putri’Amira Rafee, C. C. Yeo, S. A. Nordin, A. R. A. Rahim, M. M. J. Al-Obaidi, & M. N. M. Desa. 2018. Characterization of resistance to selected antibiotics and Panton-Valentine leukocidin-positive Staphylococcus aureus in a healthy student population at a Malaysian University. Germs 8: 21. https://doi.org/10.18683/germs.2018.1129

Tegegne, H.A., I. Koláčková, & R. Karpíšková. 2017. Diversity of livestock associated methicillin-resistant Staphylococcus aureus. Asian Pac. J. Trop. Med. 10: 929-931. https://doi.org/10.1016/j.apjtm.2017.08.013

Tsubakishita, S., K. Kuwahara-Arai, T. Baba, & K. Hiramatsu. 2010. Staphylococcal cassette chromosome mec-like element in Macrococcus caseolyticus. Antimicrob. Agents Chemother. 54:1469-1475. https://doi.org/10.1128/AAC.00575-09

Virdis, S., C. Scarano, F. Cossu, V. Spanu, C. Spanu, & E. P. L. De Santis. 2010. Antibiotic resistance in Staphylococcus aureus and coagulase negative staphylococci isolated from goats with subclinical mastitis. Vet. Med. Int. vol. 2010. https://doi.org/10.4061/2010/517060

Published
2020-02-26
How to Cite
Chai, M. H., Faiq, T. A. M., Ariffin, S. M. Z., Suhaili, Z., Sukiman, M. Z., & Ghazali, M. F. (2020). Prevalence of Methicillin Resistant Staphylococcus aureus in Raw Goat Milks from Selected Farms in Terengganu, Malaysia. Tropical Animal Science Journal, 43(1), 64-69. https://doi.org/10.5398/tasj.2020.43.1.64