Response of Growing Dairy Bulls to Dietary Tannin in Rations with Varying Energy Levels

  • J. B. Poblete Institute of Animal Science, College of Agriculture and Food Sciences, University of the Philippines https://orcid.org/0000-0001-7693-1870
  • A. A. Angeles Dairy Training and Research Institute, College of Agriculture and Food Sciences, University of the Philippines
  • E. M. Agbisit, Jr. Institute of Animal Science, College of Agriculture and Food Sciences, University of the Philippines
  • M. V. O. Espaldon School of Environmental Science and Management, University of the Philippines
Keywords: tannin, metabolizable energy, apparent total-tract digestibility, in vitro gas production

Abstract

This study was conducted to determine the effect of dietary tannin on growth performance, rumen fluid characteristics, and apparent total-tract digestibility in growing Holstein-Friesian x Sahiwal bulls fed low and high energy rations. Eighteen growing bulls with initial body weight (BW) of 162.8±12.7 kg at 15±0.80 months were used in an unbalanced randomized complete block design set-up in a 2x2 factorial arrangement. The experimental animals were blocked by their respective BW. Animals were fed with concentrates containing metabolizable energy (ME) at 2.47 and 2.72 Mcal/kg without or with 20g/kg tannin in dry matter basis. At the final week of the trial, rumen fluid and fecal samples were collected for the rumen fluid characteristics and apparent total-tract digestibility analyses. No differences (p>0.05) were observed between the growth performance, rumen gas production, volatile fatty acids as well as organic matter, crude protein, and energy digestibility. High energy concentrates had higher (p<0.05) dry matter and neutral detergent fiber digestibility than low energy concentrates. Low energy concentrates without tannin had cheaper (p<0.001) total feed cost but feed cost per kilogram BW gain was similar (p>0.05) across treatments. Feed savings costs of US$ 17.58 per animal were attained in feeding low energy concentrates without tannin. Therefore, feeding concentrates containing 2.47 Mcal/kg ME without additional tannin can still be fed economically to growing cattle without any adverse effect on growth, ruminal fermentation characteristics, and apparent total-tract digestibility.

Downloads

Download data is not yet available.

References

Alves, T. P., A. C. Dall-Orsoletta & H. M. Ribeiro-Filho. 2017a. The effects of supplementing Acacia mearnsii tannin extract on dairy cow dry matter intake, milk production, and methane emission in a tropical pasture. Trop. Anim. Health Prod. 49:1663–1668. https://doi.org/10.1007/s11250-017-1374-9

Alves, T. P., K. M. Dias, L. J. Dallastra, B. L. Fonseca & H. M. Ribeiro-Filho. 2017b. Energy and tannin extract supplementation for dairy cows on annual winter pastures. Semina:Ciencias Agrarias 38: 1017-1026. https://doi.org/10.5433/1679-0359.2017v38n2p1017

AOAC. 2012. Official Methods of Analysis of AOAC International. 18th ed. Assoc. Off. Anal. Chem., Arlington.

Avila, S. C., G. V. Kozloski, T. Orlandi, M. P. Mezzomo, & S. Stefanello. 2015. Impact of a tannin extract on digestibility, ruminal fermentation and duodenal flow of amino acids in steers fed maize silage and concentrate containing soybean meal or canola meal as protein source. J. Agr. Sci. 153:943-953. https://doi.org/10.1017/S0021859615000064

Barajas, R., B. J. Cervantes, A. Camacho, E. A. Velázquez, M. A. Espino, F. Juárez, L. R. Flores, & M. Verdugo. 2010. Condensed tannins supplementation on feedlot performance of growing bulls. Proceedings of Western Section American Society of Animal Science 61:209–11.

Chaokaur, A., T. T. Nishida, I. Phaowphaisal & K. Sommart. 2015 Effects of feeding level on methane emissions and energy utilization of Brahman cattle in the tropics. Agriculture, Ecosystems, and Environment. 199:225-230. https://doi.org/10.1016/j.agee.2014.09.014

Cho, S., D. T. Mbiriri, K. Shim, A. L. Lee, S. J. Oh, J. Yang, C. Ryu, Y. H. Kim, K. S. Seo, J. I. Chae, Y. K. Oh & N. J. Choi. 2014. The influence of feed energy density and a formulated additive on rumen and rectal temperature in Hanwoo steers. Asian-Australas. J. Anim. Sci. 27:1652-1662. https://doi.org/10.5713/ajas.2014.14562

Cottyn, B. G. & C. H. Boucque. 1968. Rapid method for the gas chromatographic determination of volatile fatty acids in rumen fluid. J. Agric. Food Chem. 16:105-107. https://doi.org/10.1021/jf60155a002

Dallastra, L. J. H., T. P. Alves, J. G. Dal-Pizzol, B. L. Fonseca, M. Camera, G. T. Raupp & H. M. Ribeiro-Filho. 2018. Tannin extract of Acacia mearnsii for lactating ewes. Semina: Ciencias Agrarias 39: 2741-2748. https://doi.org/10.5433/1679-0359.2018v39n6p2741

FAO (Food and Agriculture Organization of the United Nations). 2016. FAOSTAT Database. Rome, Italy:

FAO. Retrieved April 1, 2019 from http://www.fao.org/faostat/en/#data/QA/visualize.

FAO (Food and Agriculture Organization of the United Nations). 2017. Global Livestock Environmental Assessment Model (GLEAM). Rome, Italy: FAO. Retrieved August 22, 2019 from http://www.fao.org/gleam/results/en/.

Frutos, P., G. Hervás, F. J. Giráldez, & A. R. Mantecón. 2004. Review. tannins and ruminant nutrition. Span. J. Agric. Res. 2:191–202. https://doi.org/10.5424/sjar/2004022-73

Gemeda, B. S. & A. Hassen. 2015. Effect of tannin and species variation on in vitro digestibility, gas, and methane production of tropical browse plants. Asian Australas. J. Anim. Sci. 28:188-199. https://doi.org/10.5713/ajas.14.0325

Graphpad Software, Inc. 2016. Graphpad Prism v. 7. [Computer software]. San Diego CA.

Huang, Q., X. Liu, G. Zhao, T. Hu, & Y. Wang. 2018. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim. Nutr. 4:137-150. https://doi.org/10.1016/j.aninu.2017.09.004

Ikarashi, N., R. Takeda, K. Ito, W. Ochiai & K. Sugiyama. 2011. The inhibition of lipase and glucosidase activities by Acacia polyphenol. Evidence-Based Complementary and Alternative Medicine vol. 2011, Article ID 272075, 8 pages, 2011. https://doi.org/10.1093/ecam/neq043

Jeronimo, E., C. Pinheiro, E. Lamy, M. T. Dentino, E. Sales-Baptista, O. Lopes & F. C. Silva. 2016. Tannins in Ruminant Nutrition: Impact on Animal Performance and Quality of Edible Products. In: C.A. Combs (Ed). Tannins: Biochemistry, Food Sources and Nutritional Properties. Nova Science Publishers Inc., New York. p. 1-43.

Koenig, K. M., K. A. Beauchemin & S. M. Mcginn. 2018. Feeding condensed tannins to mitigate ammonia emissions from beef feedlot cattle fed high-protein finishing diets containing distillers grains. J. Anim. Sci. 96:4414–4430. https://doi.org/10.1093/jas/sky274

Kozloski, G. V., C. J. Harter, F. Hentz, S. Capa De Avila, T. Orlandi & C. M. Stefanello. 2012. Intake, digestibility and nutrients supply to wethers fed ryegrass and intraruminally infused with levels of Acacia mearnsii tannin extract. Small Rumin. Res. 106:125-130. https://doi.org/10.1016/j.smallrumres.2012.06.005

Luo, C., S. Cai, L. Jia, X. Tang, R. Zhang, G. Jia, H. Li, J. Tang, G. Liu & C. Wu. 2015. Study on accurate determination of volatile fatty acids in rumen fluid by capillary gas chromatography. 5th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2015). Atlantis Press, China. Pp. 386-391. https://doi.org/10.2991/icimm-15.2015.73

Naumann, H. D., Tedeschi, L. O., Zeller, W. E., & Huntley, N. F. 2017. The role of condensed tannins in ruminant animal production: advances, limitations and future directions. R. Bras. Zootec. 46:929-949. https://doi.org/10.1590/s1806-92902017001200009

National Research Council. 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Natl. Acad. Sci., Washington, DC.

Navarrete, J. D., M. F. Montano, C. Raymundo, J. Salinas-Chavira, N. Torrentera & R. A. Zinn. 2017. Effect of energy density and virginiamycin supplementation in diets on growth performance and digestive function of finishing steers. Asian-Australas. J. Anim. Sci. 30(10):1396-1404. https://doi.org/10.5713/ajas.16.0826

Ørskov, E. R. & P. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighed according to rate of passage. J. Agri. Sci. 92: 499–503. https://doi.org/10.1017/S0021859600063048

Philippine Society of Animal Nutritionists (PHILSAN). 2010. PHILSAN Feed Reference Standards. 4th ed. University of the Philippines-Los Baños, Laguna, Philippines. p. 163.

Piñeiro-Vazquez, A. T., J. R. Canul-Solís, J. A. Alayón-Gamboa, A. J. Chay-Canul, A. J. Ayala-Burgos, C. F. Aguilar-Pérez, F. J. Solorio-Sánchez & J. C. Ku-Vera. 2015. Potential of condensed tannin for the reduction of emission of enteric methane and their effect on ruminant productivity. Arch. Med. Vet. 47: 263-272. https://doi.org/10.4067/S0301-732X2015000300002

Rivera-Mendez, C. R., A. Plascencia, N. Torrentera & R. A. Zinn. 2017. Effect of level and source of supplemental tannin on growth performance of steers during the late finishing phase. J. Appl. Anim. Res. 45: 199–203. https://doi.org/10.1080/09712119.2016.1141776

SAS Institute. 2012. SAS User’s Guide: Statistics (Version. 9.1 ed.), SAS Inst. Inc., Cary, NC.

Tangjitwattanachai N. & K. Sommart. 2012. Effects of metabolizable energy intake on growth performance and nutrient digestibility of Thai native cattle. Khon Kaen Agricultural Journal 40:536-540.

Van Soest, P. J., J. B. Robertson & B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Waghorn, G. 2008. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-Progress and challenges. Anim. Feed Sci. Tech. 147:116–139. https://doi.org/10.1016/j.anifeedsci.2007.09.013

Published
2020-02-26
How to Cite
Poblete, J. B., Angeles, A. A., Agbisit, Jr., E. M., & Espaldon, M. V. O. (2020). Response of Growing Dairy Bulls to Dietary Tannin in Rations with Varying Energy Levels. Tropical Animal Science Journal, 43(1), 50-56. https://doi.org/10.5398/tasj.2020.43.1.50