Performance and Carcass Characteristics of Broiler Chickens Fed Various Components of Candlenut Kernel

  • R. A. Rasid Livestock Programme, Faculty of Sustainable Agriculture, Universiti Malaysia Sabah
  • A. R. Baba Livestock Programme, Faculty of Sustainable Agriculture, Universiti Malaysia Sabah
  • N. M. Yaakub Livestock Programme, Faculty of Sustainable Agriculture, Universiti Malaysia Sabah
  • A. R. Milan Livestock Programme, Faculty of Sustainable Agriculture, Universiti Malaysia Sabah
Keywords: Aleurites moluccana, fatty acid, broiler, candlenut kernel, broiler carcass

Abstract

One-hundred male broiler chickens (Cobb500) were assigned randomly in a completely randomized design (CRD) into four dietary treatment groups to determine the effects of various components (whole kernel, kernel oil, kernel defatted) of candlenut (Aleurites moluccana) kernel on growth performance, carcass yield, and proximate and fatty acid composition in meat during the grower-finisher stage. Each treatment consisted of 5 replicates with 5 birds for each replications. From 21 to 42 days of age, the birds  were offered either one of the following dietary treatments namely;  Basal diet containing no candlenut kernel (T1), Basal diet containing 2.5% whole candlenut kernel (T2), Basal diet containing 2.5% candlenut kernel oil (T3), and Basal diet containing 2.5% candlenut kernel defatted (T4). The significant difference was determined when the probability level was p<0.05. Birds fed the experimental diets showed no significant difference on growth performance, carcass yield, and proximate and fatty acid compositions in meat. However, birds fed diets containing various components of candlenut had small effect on reducing feed intake, decreasing crude protein and crude fat contents in meat, and increasing total C18:2n-6 and n-6 PUFA. In conclusion, supplementation of various components of candlenut kernel in broiler diet did not improve growth performance, carcass yield, and proximate and fatty acid compositions in meat.

Downloads

Download data is not yet available.

Author Biographies

R. A. Rasid, Livestock Programme, Faculty of Sustainable Agriculture, Universiti Malaysia Sabah
Livestock Programme
A. R. Baba, Livestock Programme, Faculty of Sustainable Agriculture, Universiti Malaysia Sabah
Livestock Programme
N. M. Yaakub, Livestock Programme, Faculty of Sustainable Agriculture, Universiti Malaysia Sabah
Livestock Programme
A. R. Milan, Livestock Programme, Faculty of Sustainable Agriculture, Universiti Malaysia Sabah
Horticulture and Landscaping

References

Abbas, M. T., M. Arif, M. Saeed, M. Reyad-ul-Ferdous, M. A. Hassan, M. A. Arain, & A. Rehman. 2016. Emulsifier effect on fat utilization in broiler chicken. Asian J. Anim. Vet. Adv. 11:158-167. https://doi.org/10.3923/ajava.2016.158.167

AOAC. 1984. Official Methods of Analysis. Association of Official Analytical Chemists. 14th ed. Assoc. Off. Anal. Chem., Arlington.

Al-Khalifa, H., D. I. Givens, C. Rymer, & P. Yaqoob. 2012. Effect of n-3 fatty acids on immune function in broiler chickens. Poult. Sci. 91:74-88. https://doi.org/10.3382/ps.2011-01693

Bostami, A. B. M. R., H. S. Mun, & C-J. Yang. 2017. Breast and thigh meat chemical composition in fatty acid profile in broilers fed diet with dietary fat sources. J. Food Process Technol. 8: 672. https://doi.org/10.4172/2157-7110.1000672

Carrillo, S., F. Lopez, M. M. Casas, E. Avila, R. M. Castillo, M. E. Carronco, C. Calco, & F. Perez-Gil. 2008. Potential use of seaweeds in the laying hen ration to improve the quality of n-3 fatty acid enriched eggs. J. Appl. Phycology. 20:271-278. https://doi.org/10.1007/s10811-008-9334-4

Covacevich, J., P. Davie, & J. Pearn. 1987. Toxic Plants and Animals: A Guide for Australia. Queensland Museum, Brisbane. Pp. 369-389.

del Puerto, M., M. C. Cabrera, & S. Ali. 2017. A note on fatty acids profile of meat from broiler chickens supplemented with inorganic or organic selenium. Int. J. Food Sci. Vol. 2017, Article ID 7613069. https://doi.org/10.1155/2017/7613069

Ebrahimi, M., M. A. Rajion, & Y. M. Goh. 2014. Effects of oils rich in linoleic and α-linolenic acids on fatty acid profile and gene expression in goat meat. Nutrients. 6:3913-3928. https://doi.org/10.3390/nu6093913

Faria, P. B., M. C. Bressan, X. R. D. Souza, L. V. Rossato, L. M. G. Botego, & L. T. D. Gama. 2010. Carcass and part yield of broilers reared under a semi-extensive system. Brazilian J. Poult. Sci. 12: 153-159. https://doi.org/10.1590/S1516-635X2010000300003

Freitas, H. B. D., K. M. R. D. S. Nascimento, C. Kiefer, G. A. Gomes, T. T. D. Santos, E. R. M. Garcia, T. R. D. Silva, L. L. Paiva, & P. R. Berno. 2019. Graded levels of phytase on performance, bone mineralization and carcass traits of broiler fed reduced dicalcium phosphate. Asian-Australas. J. Anim. Sci. 32: 691-700. https://doi.org/10.5713/ajas.18.0228

Hashemi, S. M., T. C. Loh, H. L. Foo, I. Zulkifli, & M Hair-Bejo. 2014. Dietary putrescine effects on performance parameters, nutrient digestibility, intestinal morphology and tissue polyamine content of broilers fed low protein diet. Iran. J. Vet. Res. 15:385-391.

Kanakri, K., J. Carragher, R. Hughes, B. Muhlhausler, & R. Gibson. 2018. The effect of different dietary fats on the fatty acid composition of several tissues in broiler chickens. Eur. J. Lipid Sci. Technol. 120:1-13. https://doi.org/10.1002/ejlt.201700237

Koreleski, J. & S. Swiatkiewicz. 2007. Dietary supplementation with plant extracts, xantophylls and synthetic antioxidants: Effect of fatty acid profile and oxidative stability of frozen stored chicken breast meat. J. Anim. Feed Sci. 16:463-471.

Leke, J. R., J. S. Mandey, J. T. Laihad, R. M. Tinangon, L. Tangkau, & C. Junus. 2018. Performance and lipid profiles of native chickens fed diet containing skipjack fish oil as by-product of fish canning factory. IOP Conf. Ser.: Earth Environ. Sci. 102 012041. https://doi.org/10.1088/1755-1315/102/1/012041

Lee, J. Y., G. G. Han, H-B. Lee, S-M. Lee, S-K. Kang, G-D. Jin, J. Park, B. J. Chae, Y. H. Choi, E. B. Kim, & Y-J. Choi. 2017. Prohibition of antibiotic growth promoters has affected the genomics profiles of Lactobacillus salivarius inhabiting the swine intestine. PLOS ONE 12:e0186671. https://doi.org/10.1371/journal.pone.0186671

Martin, C., A. Moure, G. Martin, E. Carrillo, H. Dominquez, & J. C. Parajo. 2010. Fractional characterization of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstock for biodiesel production in Cuba. Biosmass and Bioenergy 34:553-538. https://doi.org/10.1016/j.biombioe.2009.12.019

Morales-Barrera, J. E., M. J. Gonzalez-Alcorta, R. M. Castillo-Dominguez , O. F. Prado-Rebolledo, X. Hernandez-Velasco, A. Menconi, G. Tellez, B. M. Hargis, & S. Carrillo-Dominguez. 2013. Fatty acid deposition on broiler meat in chickens supplemented with tuna oil. Food Nutr. Sci. 4:16-20. https://doi.org/10.4236/fns.2013.49A1003

Mpala, L. N., G. R. Chikowe, & I. E. Cock. 2017. Aleurites moluccanus (l.) Willd. extracts inhibit the growth of bacterial triggers of selected autoimmune inflammatory diseases. Pharmacogn. Commn. 7:83-90. https://doi.org/10.5530/pc.2017.2.12

Mridula, D., D. Kaur, S. S. Nagra, P. Barnwal, S. Gurumayum, & K. K. Singh. 2012. Effect of dietary flaxseed supplementation on egg production and quality in laying hens. Indian J. Poult. Sci. 40:40-47.

NRC (National Research Council). 1994. Nutrient Requirement of Poultry. 9th rev. ed. National Academy Press, Washington, DC.

Nwosu, J. N., C. N. Ubbaonu, E. O. I. Banigo, & A. Uzomah. 2010. The effects of processing on the anti-nutritional properties of ‘oze’ (Bosquiea angolensis) seeds. New York Sci J. 3:106-111.

Poorghasemi, M., A. Seidavi, A. A. A. Qotbi, V. Laudadio, & V. Tufarelli. 2013. Influence of dietary fat source on growth performance responses and carcass traits of broiler chicks. Asian-Australas. J. Anim. Sci. 26:705-710. https://doi.org/10.5713/ajas.2012.12633

Reyes, F. C. C., A. T. A. Aguirre, E. M. Agbisit Jr, F. E. Merca, G. L. Manulat, & A. A. Angeles. 2018. Growth performances and carcass characteristics of broiler chickens fed akasya [Samanea Saman (Jacq.) Merr.] pod meal. Tropical Anim. Sci. 41: 46-52. https://doi.org/10.5398/tasj.2018.41.1.46

Rohaida, A. R., A. R. Alimon, & A. Q. Sazili. 2014. Fatty acid composition of breast and thigh muscles of broiler fed diets supplemented with candlenut kernel meal subjected to different heat treatments. Malaysian J. Anim. Sci. 17:47-60.

Tang, S. C., I. Zulkifli, M. Ebrahimi, A. R. Alimon, A. F. Soleimani, & K. Filer. 2011. Effects of feeding different levels of corn dried distillers grains with soluble on growth performance, carcass yield and meat fatty acid composition in broiler chickens. Int. J. Anim. Vet. Advances. 3:205-211.

Tohid, V., N-A. Kambiz, E-N. Yahya, M-S. Naser, & V. Sina. 2008. The effects of energy increasing and protein lowering by addition on fats to diet on broiler chickens: Performance and Serum Lipids. Asian J. Anim. Advances. 3: 286-292. https://doi.org/10.3923/ajava.2008.286.292

Trembecka, L., P. Hascik, J. Cubon, M. Bobko & A. Pavelkova. 2016. Fatty acids profile of breast and thigh muscles of broiler chickens fed diets with propolis and probiotics. J. Central European Agri. 17: 1179-1193. https://doi.org/10.5513/JCEA01/17.4.1828

Walter, A. & C. Sam. 2002. Fruits of Oceania. ACIAR Monograph 85. Australian Center for Agricultural Research. Canberra, Australia.

Woods, V. B. & A. M. Fearon. 2009. Dietary sources of unsaturated fatty acids for animals and their transfer into meat, milk and eggs: A review. Livestock Sci. 126:1-20. https://doi.org/10.1016/j.livsci.2009.07.002

Published
2019-11-12
How to Cite
Rasid, R. A., Baba, A. R., Yaakub, N. M., & Milan, A. R. (2019). Performance and Carcass Characteristics of Broiler Chickens Fed Various Components of Candlenut Kernel. Tropical Animal Science Journal, 42(3), 203-208. https://doi.org/10.5398/tasj.2019.42.3.203