Polymorphism of Bovine Growth Hormone Receptor Gene (g.3338A>G) and Its Association with Body Measurements and Body Weight in Pasundan Cows

  • W. P. B. Putra Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI)
  • P. P. Agung Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI)
  • S. Anwar Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI)
  • S. Said Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI)
Keywords: body weight, bGHR gene, body measurements, Pasundan cows, polymorphism


Bovine growth hormone receptor (bGHR) gene was one of the growth hormone family genes that important for body growth and development of cattle. This research was carried out to identify the polymorphism in the exon 10 of bGHR gene from 142 heads of Pasundan cows at West Java and its association with body length (BL), withers height (WH), heart girth (HG), and body weight (BW). There are two mutation points in the bGHR gene based on the sequencing analysis i.e. g.3322del.A and g.3338A>G. The single nucleotide polymorphism (SNP) at g.3338A>G was detected using PCR-RFLP method with AluI restriction enzyme and showed three genotypes of AA (0.49), AG (0.37), and GG (0.14). The allelic frequencies were 0.67 (A) and 0.33 (G). The number of allele effective (ne) value was 1.79 and described that A allele was the higher allele in the bGHR gene in this study. The polymorphic informative content (PIC) value was 0.34 and categorized as a moderate category. The Chi-square (χ2) analysis showed that the population sample was in the Hardy-Weinberg equilibrium (χ2<5.99). It was concluded that the polymorphism of bGHR gene had a significant association (p<0.05) with BL, WH, and BW of Pasundan cows. Research showed that all body measurements in GG genotype animals were lowest than other genotypes. Meanwhile, the highest of BW was showed in GG genotype. In addition, the average of BL, WH, HG, and BW in Pasundan cows (2 PPI and 3PPI) were 126.88±14.25 cm; 133.97±31.69 cm; 145.35±13.56 cm and 201.85±44.87 kg, respectively.


Download data is not yet available.

Author Biography

W. P. B. Putra, Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI)
Laboratory of Animal Reproduction, Breeding and Cell Culture

Research Center for Biotechnlogy

Indonesian Institute of Sciences


Agung, P. P., F. Saputra, M. S. A. Zein, A. S. Wulandari, W. P. B. Putra, S. Said, & J. Jakaria. 2019. Genetic diversity of Indonesian cattle breeds based on microsatellite markers. Asian-Australas. J. Anim. Sci. 32: 467-476. https://doi.org/10.5713/ajas.18.0283

Akad, I. A., M. Ahmet, & O. O. Kemal. 2012. A determination of growth hormone receptor gene polymorphisms in East Anatolian Red cattle, South Anatolian Red cattle, and Turkish Grey cattle. Turk. J. Vet. Anim. Sci. 36: 27-33.

Alsiddiq, M. A., S. A. Babiker, M. Y. Galal, & A. M. Mohammed. 2010. Phenotypic characterization of Sudan Zebu cattle. J. Anim. Vet. Sci. 5: 10-17.

Andreas, E., C. Sumantri, H. Nuraini, A. Farajallah, & A. Ang­graeni. 2010. Identification of GH|AluI and GHR|AluI genes polymorphisms in Indonesian buffalo. J. Indonesian Trop. Anim. Agric. 35: 215-221. https://doi.org/10.14710/jitaa.35.4.215-221

Ardicli S., H. Samli, D. Dincel, B. Soyudal & F. Balci. 2017a. Individual and combined effect of CAPN1, CAST, LEP, and GHR gene polymorphisms on carcass characteristics and meat quality in Holstein bulls. Arch. Anim. Breed. 60: 303-313. https://doi.org/10.5194/aab-60-303-2017

Ardicli S., D. Dincel, H. Samli, & F. Balci. 2017b. Effects of polymorphism at LEP, CAST, CAPN1, GHR, FABP4 and DGAT1 genes on fattening performance and carcass traits in Simmental bulls. Arch. Anim. Breed. 60: 61-70. https://doi.org/10.5194/aab-60-61-2017

Deepika, & R. K. Salar. 2013. Polymorphism studies of growth hormone receptor (GHR) gene in native grey cattle breeds of India. DHR-IJBLS4. 4: 270-277.

Di Stasio, L., G. Destefanis, A. Brugiapaglia, A. Albera, & A. Rolando. 2005. Polymorphism of the GHR gene in cattle and relationships with meat production and quality. Anim. Genet. 36: 138-140. https://doi.org/10.1111/j.1365-2052.2005.01244.x

Dwitresnadi, R., M. Sulaeman, & J. Arifin. 2015. Breeding activity performance of Pasundan cattle on extensive system. http://jurnal.unpad.ac.id/ejournal/article/view/6933/3248. [9 October 2018]

Fedota O. M., N. G. Lysenko, S. Yu, Ruban, O. I. Kolisynyk & I. V. Goraychuk. 2017. The effect of polymorphisms in growth hormone and growth hormone receptor genes on production and reproduction traits in Aberden-Angus cattle (Bos taurus L., 1758). Cytol. Genet. 51: 352-360. https://doi.org/10.3103/S0095452717050024

Garrett, A. J., G. Rincon, J. F. Medrano, M. A. Elzo, G. A. Silver, & M. G. Thomas. 2008. Promoter region of the bovine growth hormone receptor gene: Single nucleotide polymorphism discovery in cattle and association with performance in Brangus bulls. J. Anim. Sci. 86: 3315-3323. https://doi.org/10.2527/jas.2008-0990

Gunawan, A. & Jakaria. 2011. Genetic and non-genetic effect on birth, weaning and yearling weight of Bali cattle. Med. Pet. 34: 93-98. https://doi.org/10.5398/medpet.2011.34.2.93

Hadi, Z., H. Atashi, M. Dadpasand, A. Derakhshandeh, & S. M. M. Ghahramani. 2015. The relationship between growth hormone polymorphism and growth hormone receptor genes with milk yield and reproductive performance in Holstein dairy cows. IJVR. 16: 244-248.

Hartati, Muladno, Jakaria, R. Priyanto, A. Gunawan, Aryogi & C. Talib. 2015. Heritability estimation and non-genetic factors affecting production traits of Indonesian Ongole cross. JITV. 20: 168-174.

Hildebrand, C. E., D. C. Torney, & R. P. Wagner. 1992. Informativeness of polymorphic DNA markers. Los Alamos Sci. 20: 100-102.

Jiang, H. & M. C. Lucy. 2001. Variants of the 5’-untranslated region of the bovine growth hormone receptor mRNA: isolation, expression and effect on translation efficiency. Gene. 265: 45-53. https://doi.org/10.1016/S0378-1119(01)00356-0

Kaps, M. & W.R. Lamberson. 2004. Biostatistics for Animal Sciences. CABI Publishing, London. https://doi.org/10.1079/9780851998206.0000

Kashoma, I.P.B., C. Luziga, C.W. Werema, G.A. Shirima & D. Ndossi. 2011. Predicting body weight of Tanzania Shorthorn Zebu cattle using hearth girth measurements. Livest. Res. Rur. Dev. 4: 150-153.

Kaswati, Sumadi & N. Ngadiyono. 2013. The heritability estimation for birth weight, weaning weight and yearling weight of Bali cattle at Balai Pembibitan Ternak Unggul Sapi Bali. Bullet. Anim. Sci. 37: 74-78.

KEMENTAN RI. 2017. Livestock and Animal Health Statistics 2017. Direktorat Peternakan dan Kesehatan Hewan. Kementerian Pertanian RI, Jakarta.

Khan, M.A. & M.S. Khan. 2016. Heritability, genetic and phenotypic correlations of body capacity traits with yield in Sahiwal cows of Pakistan. Pak. J. Life Soc. Sci. 14: 77-82.

Komisarek, J., A. Michalak, & A. Walendoskwa. 2011. The effects of polymorphism in DGAT1, GH and GHR genes on reproduction and production traits in Jersey cows. Anim. Sci. Prod. 29: 29-36.

Lin, B. Z, S. Sasazaki, J. H. Lee, & H. Mannen. 2009. Genetic diversity of growth hormone receptor gene in cattle. J. Anim. Sci. 80:528–531. https://doi.org/10.1111/j.1740-0929.2009.00676.x

Lucy, M. C., G. S. Johnson, H. Shibuya, C. K. Boyd, & W. O. Herring. 1998. Rapid communication: Polymorphic (GT) microsatellite in the bovine somatotropin receptor gene promoter. J. Anim. Sci. 76: 2209-2210. https://doi.org/10.2527/1998.7682209x

Martinez, R., J. F. Rocha, D. Bejarano, Y. Gomez, Y. Abuabara, & J. Gallego. 2016. Identification of SNPs in growth-related genes in Colombian creole cattle. Genet. Mol. Res. 15: 1-16. https://doi.org/10.4238/gmr.15038762

Maskur, Rodiah, & A. Chairussyuhur. 2014. Association of a novel single nucleotide polymorphism in growth hormone receptor gene with production traits in Bali cattle. Ital. J. Anim. Sci. 13: 841-844. https://doi.org/10.4081/ijas.2014.3461

Misrianti, R., C. Sumantri, & A. Anggraeni. 2011. Polymorphism of growth hormone receptor (GHR) gene in Holstein Friesian dairy cattle. JITV. 16: 253-259.

Nei, M. & F. Tajima. 1981. Genetic drift and estimation of effective population size. Genetics. 98: 625-640.

Nei, M. & S. Kumar. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.

Olenski, K., T. Suchocki, & S. Kaminski. 2010. Inconsistency of associations between growth hormone receptor gene polymorphism and milk performance traits in Polish Holstein-Friesian. Anim. Sci. Prod. 28: 229-234.

Ozkaya, S., W. Neja, S. Krezel-Czopek, & A. Oler. 2016. Estimation of body weight from body measurements and determination of body measurements on Limousin cattle using digital image analysis. Anim. Prod. Sci. 56: 2056-2063. https://doi.org/10.1071/AN14943

Putra, W. P. B., Sumadi & T. Hartatik. 2014. The estimation of breeding value and most probable producing ability of production traits of Aceh cattle at Indrapuri district Aceh province. Bullet. Anim. Sci. 38: 1-7.

Putra, W. P. B., P. P. Agung & S. Said. 2018. Non-genetic factor and genetic parameter analysis for growth traits in Sumba Ongole (SO) cattle. J. Indonesian Trop.Anim. Agric. 43: 94-106. https://doi.org/10.14710/jitaa.43.2.94-106

Reardon, W., A. M. Mullen, T. Sweeney, & R. M. Hamill. 2010. Association of polymorphisms in candidate genes with colour, water-holding capacity, and composition traits in bovine M. longissimus and M. semimembranosus. Meat. Sci. 86: 270-275. https://doi.org/10.1016/j.meatsci.2010.04.013

Said S., W. P. B. Putra, S. Anwar, P. P. Agung, and H. Yuhani. 2017. Phenotypic, morphometric characterization and population structure of Pasundan cattle at West Java, Indonesia. Biodiversitas. 18: 1638-1645.

Serkan, O. & Y. Bozkut. 2009. The accuracy of prediction of body weight from body measurements in beef cattle. Arch. Tierz. 52: 371-377.

Shabbir, M. Z., A. Ahmad, M. N. Zahid, J. Nazir, M. Nawaz, & H. Akbar. 2013. Sample Collection Guide: A Practical Approach. Nexus Academic Publishers, Lahore.

Sulasmi, A. Gunawan, R. Priyanto, C. Sumantri, & J. Arifin. 2017. Uniformity and adjacency morphometrics body size of Pasundan cattle. J. Veteriner. 18: 263-273. https://doi.org/10.19087/jveteriner.2017.18.2.263

Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197

Torell, R., B. Bruce, B. Kvasnicka, & K. Conley. 2003. Methods of determining age of cattle. http:// www.unce.unr.edu/publications/files/ag/other/cl712.pdf.

Waters, S.M., M.S. McCabe, D.J. Howard, L. Giblin, D.A. Magee, D.E. MacHugh, & D.P. Berry. 2011. Association between newly discovered polymorphisms in the Bos taurus growth hormone receptor gene and performance traits in Holstein-Friesian dairy cattle. Anim. Genet. 42: 39-49. https://doi.org/10.1111/j.1365-2052.2010.02087.x

Zhou, Y & H. Jiang. 2005. Trait-associated sequence variation in the bovine growth hormone receptor 1A promoter does not aff ect promoter activity in vitro. Anim. Genet. 36:156–159. https://doi.org/10.1111/j.1365-2052.2005.01266.x

Zulkharnaim, Jakaria, & R. R. Noor. 2010. Identifikasi keragaman genetik gen reseptor hormon pertumbuhan (GHR│AluI) pada sapi Bali. Med. Pet. 33: 81-87. https://doi.org/10.5398/medpet.2010.33.2.81

How to Cite
Putra, W. P. B., Agung, P. P., Anwar, S., & Said, S. (2019). Polymorphism of Bovine Growth Hormone Receptor Gene (g.3338A&gt;G) and Its Association with Body Measurements and Body Weight in Pasundan Cows. Tropical Animal Science Journal, 42(2), 90-96. https://doi.org/10.5398/tasj.2019.42.2.90