Studi Kinetika Degradasi Warna Biodegradable Film - Antosianin Untuk Indikator Proses Termal

  • Rozi Satria Utama Institut Pertanian Bogor
  • Nugraha Edhi Suyatma Institut Pertanian Bogor
  • Nancy Dewi Yulliana Institut Pertanian Bogor
Keywords: Anthocyanin, color degradation, roselle, thermal process indicator


Anthocyanins from different sources have been reported for its potential as thermal process indicator. This research aimed in particular to study the color degradation kinetics of anthoyanin from Roselle and in general to provide alternative natural indicator for thermal process. Roselle’s anthocyanin extract was incorporated into 3 biodegradable films (i.e agar, pectin, PVA). Thermal degradation kinetics of anthocyanin’s color (ΔE and Chroma) in biodegradable film was studied at selected temperatures (80oC, 90oC, and 100oC). The color change was observed at minute 0, 30, 60 and 120 by computer vision method. The results showed that anthocyanin incorporated into PVA film had the highest value of activation energy (Ea), while anthocyanin incorporated into pectin film had the smallest value of Ea. Lower value of Ea indicating that the anthocyanin chroma is easily degraded at low temperature. Higher value of Ea indicating that it needs
higher energy or higher temperature to degrade the color. The results of this study showed that anthocyanin in PVA film can be selected as indicator for high temperature thermal process (e.g. sterilization), while anthocyanin in pectin film can be used in lower temperature thermal process (e.g. pasteurization).


Potensi antosianin dari berbagai sumber sebagai indikator proses termal alami telah banyak dilaporkan. Penelitian ini bertujuan mempelajari kinetika degradasi warna film-antosianin serta menentukan kombinasi
biodegradable film-antosianin terbaik sebagai alternatif indikator proses termal. Pengamatan kinetik ini dilakukan pada suhu 80oC, 90oC, dan 100oC dan parameter degradasi warna yang diukur adalah ΔE dan
Chroma. Hasil penelitian menunjukkan bahwa antosianin pada film PVA mempunyai nilai energi aktivasi (Ea) paling besar, sedangkan antosianin pada film pektin mempunyai nilai Ea paling kecil. Nilai Ea degradasi
warna antosianin yang kecil pada film pektin menunjukkan bahwa degradasi warna sudah dapat berjalan pada suhu yang rendah. Sedangkan nilai Ea degradasi warna antosianin yang lebih besar pada film PVA menunjukkan bahwa antosianin pada film tersebut merupakan yang paling sensitif terhadap perubahan suhu dan paling signifikan perubahan warnanya. Namun perubahan warna yang signifikan pada antosianin
pada film PVA membutuhkan suhu yang lebih tinggi sehingga lebih tepat untuk digunakan sebagai indikator pada proses termal dengan suhu yang tinggi (misalnya sterilisasi), sedangkan antosianin pada film pektin dapat digunakan pada proses termal dengan suhu yang lebih rendah (misalnya pasteurisasi).


Download data is not yet available.

Author Biographies

Rozi Satria Utama, Institut Pertanian Bogor
Program Studi Ilmu Pangan, Institut Pertanian Bogor
Nugraha Edhi Suyatma, Institut Pertanian Bogor

Departemen Ilmu dan Teknologi Pangan,

Institut Pertanian Bogor

Nancy Dewi Yulliana, Institut Pertanian Bogor

Departemen Ilmu dan Teknologi Pangan,

Institut Pertanian Bogor


Ananga, A., V. Georgiev , J. Ochieng, B. Phills and V. Tsolova. 2013. Production of anthocyanins in grape cell cultures: a potential source of raw material for pharmaceutical, food, and cosmetic industries in

The Meditteranean Genetic Code – Grapevine and Olive, Chapter 11 p 247-287

Cao, S.Q., L. Liu and S.Y. Pan. 2011. Thermal degradation kintics of anthocyanin and visual color of blodd orange juice. Agricultural Sciences in

China 10(12); 1992-1997

[CIE] Commision Internationale De L’Eclairage. 2004. Technical report colorimetry – third edition. [Internet]. [diunduh Mar 12]. Tersedia pada:

Fernandes, A., G. Ivanova, N.F. Bras, N. Mateus, M.J. Ramos, M. Rangel and V. Freitas. 2014. Structural characterization of inclusion complexes between cyanidin-3-O-glucoside and β-cyclodextrin. Carbohydrate Polymers. 102: 269-277.

Guan, Y. and Q. Zhong. 2015. The improved thermal stability of anthocyanins at pH 5,0 by gum arabic. Food Science and Technology. 64: 706-712.

Jimenez, N., P. Bohuon, J. Lima, M. Dornier, F. Vaillant and A.M. Perez. 2010. Kinetics of anthocyanin degradation and browning in reconstituted

blackberry juice treated at high temperatures (100- 180oC). Journal of Agricultural and Food Chemistry.58, 2314-2322.

Juniarka, I.G.A., E. Lukitaningsih, S. Noegrohati. 2011. Analisis aktivitas antioksidan dan kandungan antosianin total ekstrak dan liposom kelopak

bunga rosella (hibiscus sabdariffa l.). Majalah Obat Tradisional. 16(3): 115 – 123.

Markakis, P., G.E. Livingstone and R.C. Fellers. 1957. Quantitative aspects of strawberry, pigment degradation. Food Research. 22: 117-130.

Moura, S.C.S.R., P. Prati, F.Z. Vissotto, R.C.S.C. Ormenese and M.S. Rafacho. 2011. Color degradation kinetics in low-calorie strawberry and

guava jellies. Ciencia e Tecnologia de Alimentos 31(3): 758-764

Nikkhah, E., M. Khayamy, R. Heidari and R. Jamee. 2007. Effect of Sugar Treatment on Stability of Anthocyanin Pigments in Berries. Journal of

Biological Sciences 7(8): 1412-1417

Oancea, S. And O. Draghici. 2013. pH and thermal stability of anthocyanin-based optimised extracts of romanian red onion cultivars. Czech Journal of

Food Science. 31(3): 283-291

Pereira, V.A., I.N.Q. Arruda and R. Stefani. 2015. Active chitosan/PVA films with anthocyanins from Brassica oleraceae (red cabbage) as timetemperature indicators for application in intelligent food packaging. Food Hydrocolloids. 43: 180-188.

Reyes, L.F. and L. Cisnerros-Zevallos. 2007. Degradation kinetics and colour of anthocyanins in aqueous extracts of purple and red-flesh potatoes

(Solanum tuberosum L.). Food Chemistry 100:885-894

Sakamoto, W., T. Kanehira, H. Hongou and K. Asano. 2015. Polyvinylalcohol stabilizes anthocyanins of red wine in the solid phase but not in the aqueous phase. Advances in Biological Chemistry 5 : 215-

Sinela, A., N. Rawat, C. Mertz, N. Achir, H. Fulcrand and M. Dornier. 2017. Anthocyanins degradation during storage of Hibiscus sabdariffa extract

and evolution of its degradation products. Food Chemistry 214: 234-241.

Wahyuningsih, S., L. Wulandari, M.W. Wartono, H. Munawaroh and A.H Ramelan. 2017. The effect of pH and color stability of anthocyanin on food

colorant. IOP Conf. Series: Material Science and Engineering 193 012047.

Wu, D. and D.W. Sun. 2013. Food Color Measurement using computer vision. Di dalam Kilcast D, Editor. Instrumental Assesment of Food Sensory Quality.Oxford (GB): Woodhead Publishing. hlm 165-194.

Wulandari NA. 2016. Kinetika perubahan warna pigmen alami dan potensinya sebagai label indikator proses termal. (skripsi). Departemen Ilmu dan Teknologi Pangan Institut Fakultas Teknologi Pertanian, IPB, Bogor.

Yam, K.L. and S.E. Papadakis. 2004. A simple digital imaging method for measuring and analyzing color of food surfaces. Journal of Food Engineering. 61:137-142.

Yang, Z., Y. Han, Z. Gu, G. Fan and Z. Chen. 2008. Thermal degradation kinetics of aqueous anthocyanins and visual color of purple corn

(Zea mays L.) cob. Innovative Food Science and Emerging Technologies 9: 341-347

Yoshida, C.M.P., V.B.V Maciel, M.E.D Mendonca, T.T Franco. 2014. Chitosan biobased and intelligent films : monitoring pH variations. Food Science and

Technology. 55: 83-89.